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H.264 / MPEG-4 Part 10 White Paper 
 
Overview of H.264 

1. Introduction  
 
Broadcast television and home entertainment have been revolutionised by the advent of digital TV and 
DVD-video. These applications and many more were made possible by the standardisation of video 
compression technology. The next standard in the MPEG series, MPEG4, is enabling a new generation 
of internet-based video applications whilst the ITU-T H.263 standard for video compression is now 
widely used in videoconferencing systems. 
 
MPEG4 (Visual) and H.263 are standards that are based on video compression (“video coding”) 
technology from circa. 1995. The groups responsible for these standards, the Motion Picture Experts 
Group and the Video Coding Experts Group (MPEG and VCEG) are in the final stages of developing 
a new standard that promises to significantly outperform MPEG4 and H.263, providing better 
compression of video images together with a range of features supporting high-quality, low-bitrate 
streaming video. The history of the new standard, “Advanced Video Coding” (AVC), goes back at 
least 7 years. 
 
After finalising the original H.263 standard for videotelephony in 1995, the ITU-T Video Coding 
Experts Group (VCEG) started work on two further development areas: a “short-term” effort to add 
extra features to H.263 (resulting in Version 2 of the standard) and a “long-term” effort to develop a 
new standard for low bitrate visual communications. The long-term effort led to the draft “H.26L” 
standard, offering significantly better video compression efficiency than previous ITU-T standards. In 
2001, the ISO Motion Picture Experts Group (MPEG) recognised the potential benefits of H.26L and 
the Joint Video Team (JVT) was formed, including experts from MPEG and VCEG. JVT’s main task 
is to develop the draft H.26L “model” into a full International Standard. In fact, the outcome will be 
two identical) standards: ISO MPEG4 Part 10 of MPEG4 and ITU-T H.264. The “official” title of the 
new standard is Advanced Video Coding (AVC); however, it is widely known by its old working title, 
H.26L and by its ITU document number, H.264 [1]. 

2. H.264 CODEC 
In common with earlier standards (such as MPEG1, MPEG2 and MPEG4), the H.264 draft standard 
does not explicitly define a CODEC (enCOder / DECoder pair). Rather, the standard defines the 
syntax of an encoded video bitstream together with the method of decoding this bitstream. In practice, 
however, a compliant encoder and decoder are likely to include the functional elements shown in 
Figure 2-1 and Figure 2-2. Whilst the functions shown in these Figures are likely to be necessary for 
compliance, there is scope for considerable variation in the structure of the CODEC. The basic 
functional elements (prediction, transform, quantization, entropy encoding) are little different from 
previous standards (MPEG1, MPEG2, MPEG4, H.261, H.263); the important changes in H.264 occur 
in the details of each functional element. 
 
The Encoder (Figure 2-1) includes two dataflow paths, a “forward” path (left to right, shown in blue) 
and a “reconstruction” path (right to left, shown in magenta). The dataflow path in the Decoder 
(Figure 2-2) is shown from right to left to illustrate the similarities between Encoder and Decoder. 
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Figure 2-1 AVC Encoder 
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Figure 2-2 AVC Decoder 

 

2.1 Encoder (forward path) 
 
An input frame Fn is presented for encoding. The frame is processed in units of a macroblock 
(corresponding to 16x16 pixels in the original image). Each macroblock is encoded in intra or inter 
mode. In either case, a prediction macroblock P is formed based on a reconstructed frame. In Intra 
mode, P is formed from samples in the current frame n that have previously encoded, decoded and 
reconstructed (uF’n in the Figures; note that the unfiltered samples are used to form P). In Inter mode, 
P is formed by motion-compensated prediction from one or more reference frame(s). In the Figures, 
the reference frame is shown as the previous encoded frame F’n-1 ; however, the predicton for each 
macroblock may be formed from one or two past or future frames (in time order) that have already 
been encoded and reconstructed. 
 
The prediction P is subtracted from the current macroblock to produce a residual or difference 
macroblock Dn. This is transformed (using a block transform) and quantized to give X, a set of 
quantized transform coefficients. These coefficients are re-ordered and entropy encoded. The entropy-
encoded coefficients, together with side information required to decode the macroblock (such as the 
macroblock prediction mode, quantizer step size, motion vector information describing how the 
macroblock was motion-compensated, etc) form the compressed bitstream. This is passed to a 
Network Abstraction Layer (NAL) for transmission or storage. 
 

2.2 Encoder (reconstruction path) 
 

firstime
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运动估值（Motion Estimation）
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The quantized macroblock coefficients X are decoded in order to reconstruct a frame for encoding of 
further macroblocks. The coefficients X are re-scaled (Q-1) and inverse transformed (T-1) to produce a 
difference macroblock Dn’. This is not identical to the original difference macroblock Dn ; the 
quantization process introduces losses and so Dn’ is a distorted version of Dn. 
 
The prediction macroblock P is added to Dn’ to create a reconstructed macroblock uF’n (a distorted 
version of the original macroblock). A filter is applied to reduce the effects of blocking distortion and 
reconstructed reference frame is created from a series of macroblocks F’n. 
 

2.3 Decoder 
 
The decoder receives a compressed bitstream from the NAL. The data elements are entropy decoded 
and reordered to produce a set of quantized coefficients X. These are rescaled and inverse transformed 
to give Dn’ (this identical to the Dn’ shown in the Encoder). Using the header information decoded 
from the bitstream, the decoder creates a prediction macroblock P, identical to the original prediction 
P formed in the encoder. P is added to Dn’ to produce uF’n which this is filtered to create the decoded 
macroblock F’n. 
 
It should be clear from the Figures and from the discussion above that the purpose of the 
reconstruction path in the encoder is to ensure that both encoder and decoder use identical reference 
frames to create the prediction P. If this is not the case, then the predictions P in encoder and decoder 
will not be identical, leading to an increasing error or “drift” between the encoder and decoder. 
 

3. References 
 
                                                      
1 ITU-T Rec. H.264 / ISO/IEC 11496-10, “Advanced Video Coding”, Final Committee Draft, Document JVT- 
E022, September 2002 
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H.264 / MPEG-4 Part 10 White Paper 
 
Revised April 03 
 
Prediction of Intra Macroblocks  

1. Introduction  
The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for 
the coding (compression) of natural video images. The new standard [1,2] will be known as H.264 and 
also MPEG-4 Part 10, “Advanced Video Coding”. This document describes the methods of predicting 
intra-coded macroblocks in an H.264 CODEC. 
 
If a block or macroblock is encoded in intra mode, a prediction block is formed based on previously 
encoded and reconstructed (but un-filtered) blocks. This prediction block P is subtracted from the 
current block prior to encoding. For the luminance (luma) samples, P may be formed for each 4x4 sub-
block or for a 16x16 macroblock. There are a total of 9 optional prediction modes for each 4x4 luma 
block; 4 optional modes for a 16x16 luma block; and one mode that is always applied to each 4x4 
chroma block. 

2. 4x4 luma prediction modes 
Figure 1 shows a luminance macroblock in a QCIF frame and a 4x4 luma block that is required to be 
predicted. The samples above and to the left have previously been encoded and reconstructed and are 
therefore available in the encoder and decoder to form a prediction reference. The prediction block P 
is calculated based on the samples labelled A-M in Figure 2, as follows. Note that in some cases, not 
all of the samples A-M are available within the current slice: in order to preserve independent 
decoding of slices, only samples within the current slice are available for prediction. DC prediction 
(mode 0) is modified depending on which samples A-M are available; the other modes (1-8) may only 
be used if all of the required prediction samples are available  (except that, if E, F, G and H are not 
available, their value is copied from sample D). 
 
The arrows in Figure 3 indicate the direction of prediction in each mode. For modes 3-8, the predicted 
samples are formed from a weighted average of the prediction samples A-Q. The encoder may select 
the prediction mode for each block that minimizes the residual between P and the block to be encoded. 
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Original macroblock 4x4 luma block to be predicted

 
Figure 1 Original macroblock and 4x4 luma block to be predicted 
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Figure 2 Labelling of prediction samples (4x4) 
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Figure 3 4x4 luma prediction modes 
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Example: The 9 prediction modes (0-8) are calculated for the 4x4 block shown in Figure 1. Figure 4 
shows the prediction block P created by each of the predictions. The Sum of Absolute Errors (SAE) 
for each prediction indicates the magnitude of the prediction error. In this case, the best match to the 
actual current block is given by mode 7 (vertical-right) because this mode gives the smallest SAE; a 
visual comparison shows that the P block appears quite similar to the original 4x4 block. 
 

 
Figure 4 Prediction blocks P (4x4) 

3. 16x16 luma prediction modes 
As an alternative to the 4x4 luma modes described above, the entire 16x16 luma component of a 
macroblock may be predicted. Four modes are available, shown in diagram form in Figure 5: 
 
Mode 0 (vertical): extrapolation from upper samples (H). 
Mode 1 (horizontal): extrapolation from left samples (V). 
Mode 2 (DC): mean of upper and left-hand samples (H+V). 
Mode 4 (Plane): a linear “plane” function is fitted to the upper and left-hand samples H and V. This 
works well in areas of smoothly-varying luminance. 
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Figure 5 Intra 16x16 prediction modes 

 
Example:  
 
Figure 6 shows a luminance macroblock with the previously-encoded samples at the upper and left-
hand edges. The results of prediction (Figure 7) indicate that the best match is given by mode 3. Intra 
16x16 mode works best in homogeneous areas of an image. 

 

Figure 6 16x16 macroblock 

 
 



www.vcodex.com  H.264 / MPEG-4 Part 10 : Intra Prediction 

© Iain E G Richardson 30/04/03 Page 5 of 6 

0 (vertical), SAE=8990 1 (horizontal), SAE=10898

2 (DC), SAE=11210 3 (plane), SAE=6264

 
Figure 7 Intra 16x16 predictions  
 

4. 8x8 chroma prediction mode  
Each 8x8 chroma component of a macroblock is predicted from chroma samples above and/or to the 
left that have previously been encoded and reconstructed. The 4 prediction modes are very similar to 
the 16x16 luma prediction modes described in section 3 and illustrated in Figure 5, except that the 
order of mode numbers is different: DC (mode 0), horizontal (mode 1), vertical (mode 2) and plane 
(mode 3). The same prediction mode is always applied to both chroma blocks. 
 
Note: if any of the 8x8 blocks in the luma component are coded in Intra mode, both chroma blocks are 
Intra coded. 

5. Encoding intra prediction modes 
The choice of intra prediction mode for each 4x4 block must be signalled to the decoder and this could 
potentially require a large number of bits. However, intra modes for neighbouring 4x4 blocks are 
highly correlated. For example, if previously-encoded 4x4 blocks A and B in Figure 8 were predicted 
using mode 2, it is likely that the best mode for block C (current block) is also mode 2.  
 
For each current block C, the encoder and decoder calculate the most_probable_mode. If A and B are 
both coded in 4x4 intra mode and are both within the current slice, most_probable_mode is the 
minimum of the prediction modes of A and B; otherwise most_probable_mode is set to 2 (DC 
prediction). 
 
The encoder sends a flag for each 4x4 block, use_most_probable_mode. If the flag is “1”, the 
parameter most_probable_mode is used. If the flag is “0”, another parameter 
remaining_mode_selector is sent to indicate a change of mode. If remaining_mode_selector is smaller 
than the current most_probable_mode then the prediction mode is set to remaining_mode_selector; 
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otherwise the prediction mode is set to remaining_mode_selector+1. In this way, only 8 values of 
remaining_mode_selector are required (0 to 7) to signal the current intra mode (0 to 8). 
 

. 

C
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B
 

Figure 8 Adjacent 4x4 intra coded blocks  

6. References 
 
                                                 
1 ITU-T Rec. H.264 / ISO/IEC 11496-10, “Advanced Video Coding”, Final Committee Draft, Document JVT-
F100, December 2002 
2 Iain E G Richardson, “H.264 and MPEG-4 Video Compression”, John Wiley & Sons, to be published late 
2003 
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H.264 / MPEG-4 Part 10 White Paper 
 
Prediction of Inter Macroblocks in P-slices 

1. Introduction  
The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for 
the coding (compression) of natural video images. The new standard [1] will be known as H.264 and 
also MPEG-4 Part 10, “Advanced Video Coding”. This document describes the methods of predicting 
inter-coded macroblocks in P-slices in an H.264 CODEC. 
Inter prediction creates a prediction model from one or more previously encoded video frames. The 
model is formed by shifting samples in the reference frame(s) (motion compensated prediction). The 
AVC CODEC uses block-based motion compensation, the same principle adopted by every major 
coding standard since H.261. Important differences from earlier standards include the support for a 
range of block sizes (down to 4x4) and fine sub-pixel motion vectors (1/4 pixel in the luma 
component).  

2. Tree structured motion compensation 
AVC supports motion compensation block sizes ranging from 16x16 to 4x4 luminance samples with 
many options between the two. The luminance component of each macroblock (16x16 samples) may 
be split up in 4 ways as shown in Figure 2-1: 16x16, 16x8, 8x16 or 8x8. Each of the sub-divided 
regions is a macroblock partition. If the 8x8 mode is chosen, each of the four 8x8 macroblock 
partitions within the macroblock may be split in a further 4 ways as shown in Figure 2-2: 8x8, 8x4, 
4x8 or 4x4 (known as macroblock sub-partitions). These partitions and sub-partitions give rise to a 
large number of possible combinations within each macroblock. This method of partitioning 
macroblocks into motion compensated sub-blocks of varying size is known as tree structured motion 
compensation. 
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Figure 2-1 Macroblock partitions: 16x16, 8x16, 16x8, 8x8  
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Figure 2-2 Macroblock sub-partitions: 8x8, 4x8, 8x4, 4x4 

 
A separate motion vector is required for each partition or sub-partition. Each motion vector must be 
coded and transmitted; in addition, the choice of partition(s) must be encoded in the compressed 
bitstream. Choosing a large partition size (e.g. 16x16, 16x8, 8x16) means that a small number of bits 
are required to signal the choice of motion vector(s) and the type of partition; however, the motion 
compensated residual may contain a significant amount of energy in frame areas with high detail. 
Choosing a small partition size (e.g. 8x4, 4x4, etc.) may give a lower-energy residual after motion 
compensation but requires a larger number of bits to signal the motion vectors and choice of 
partition(s). The choice of partition size therefore has a significant impact on compression 
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performance. In general, a large partition size is appropriate for homogeneous areas of the frame and a 
small partition size may be beneficial for detailed areas. 
 
The resolution of each chroma component in a macroblock (Cr and Cb) is half that of the luminance 
(luma) component. Each chroma block is partitioned in the same way as the luma component, except 
that the partition sizes have exactly half the horizontal and vertical resolution (an 8x16 partition in 
luma corresponds to a 4x8 partition in chroma; an 8x4 partition in luma corresponds to 4x2 in chroma; 
and so on). The horizontal and vertical components of each motion vector (one per partition) are 
halved when applied to the chroma blocks. 
 
Example: Figure 2-3 shows a residual frame (without motion compensation). The AVC reference 
encoder selects the “best” partition size for each part of the frame, i.e. the partition size that minimizes 
the coded residual and motion vectors. The macroblock partitions chosen for each area are shown 
superimposed on the residual frame. In areas where there is little change between the frames (residual 
appears grey), a 16x16 partition is chosen; in areas of detailed motion (residual appears black or 
white), smaller partitions are more efficient. 
 
 

 

Figure 2-3 Residual (without MC) showing optimum choice of partitions  

3. Sub-pixel motion vectors  
Each partition in an inter-coded macroblock is predicted from an area of the same size in a reference 
picture. The offset between the two areas (the motion vector) has ¼-pixel resolution (for the luma 
component). The luma and chroma samples at sub-pixel positions do not exist in the reference picture 
and so it is necessary to create them using interpolation from nearby image samples. Figure 3-1 gives 
an example. A 4x4 sub-partition in the current frame (a) is to be predicted from a neighbouring region 
of the reference picture. If the horizontal and vertical components of the motion vector are integers (b), 
the relevant samples in the reference block actually exist (grey dots). If one or both vector components 
are fractional values (c), the prediction samples (grey dots) are generated by interpolation between 
adjacent samples in the reference frame (white dots). 
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(a) 4x4 block in current frame (b) Reference block: vector (1, -1) (c) Reference block: vector (0.75, -0.5)
 

Figure 3-1 Example of integer and sub-pixel prediction 

 
Sub-pixel motion compensation can provide significantly better compression performance than 
integer-pixel compensation, at the expense of increased complexity. Quarter-pixel accuracy 
outperforms half-pixel accuracy. 
 
In the luma component, the sub-pixel samples at half-pixel positions are generated first and are 
interpolated from neighbouring integer-pixel samples using a 6-tap Finite Impulse Response filter. 
This means that each half-pixel sample is a weighted sum of 6 neighbouring integer samples. Once all 
the half-pixel samples are available, each quarter-pixel sample is produced using bilinear interpolation 
between neighbouring half- or integer-pixel samples. 
 
If the video source sampling is 4:2:0, 1/8 pixel samples are required in the chroma components 
(corresponding to ¼-pixel samples in the luma). These samples are interpolated (linear interpolation) 
between integer-pixel chroma samples. 
 

4. Motion vector prediction 
Encoding a motion vector for each partition can take a significant number of bits, especially if small 
partition sizes are chosen. Motion vectors for neighbouring partitions are often highly correlated and 
so each motion vector is predicted from vectors of nearby, previously coded partitions. A predicted 
vector, MVp, is formed based on previously calculated motion vectors. MVD, the difference between 
the current vector and the predicted vector, is encoded and transmitted. The method of forming the 
prediction MVp depends on the motion compensation partition size and on the availability of nearby 
vectors. The “basic” predictor is the median of the motion vectors of the macroblock partitions or sub-
partitions immediately above, diagonally above and to the right, and immediately left of the current 
partition or sub-partition. The predictor is modified if (a) 16x8 or 8x16 partitions are chosen and/or (b) 
if some of the neighbouring partitions are not available as predictors. If the current macroblock is 
skipped (not transmitted), a predicted vector is generated as if the MB was coded in 16x16 partition 
mode.  
 
At the decoder, the predicted vector MVp is formed in the same way and added to the decoded vector 
difference MVD. In the case of a skipped macroblock, there is no decoded vector and so a motion-
compensated macroblock is produced according to the magnitude of MVp. 

5. References 
                                                 
1 ITU-T Rec. H.264 / ISO/IEC 11496-10, “Advanced Video Coding”, Final Committee Draft, Document JVT-
G050, March 2003 
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H.264 / MPEG-4 Part 10 White Paper 
 
Transform and quantization 

1. Introduction 
The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for 
the coding (compression) of natural video images. The new standard [1] will be known as H.264 and 
also MPEG-4 Part 10, “Advanced Video Coding”. This document describes the transform and 
quantization processes defined, or implied, by the standard.  
 
Each residual macroblock is transformed, quantized and coded. Previous standards such as MPEG-1, 
MPEG-2, MPEG-4 and H.263 made use of the 8x8 Discrete Cosine Transform (DCT) as the basic 
transform. The “baseline” profile of H.264  uses three transforms depending on the type of residual 
data that is to be coded: a transform for the 4x4 array of luma DC coefficients in intra macroblocks 
(predicted in 16x16 mode), a transform for the 2x2 array of chroma DC coefficients (in any 
macroblock) and a transform for all other 4x4 blocks in the residual data. If the optional “adaptive 
block size transform” mode is used, further transforms are chosen depending on the motion 
compensation block size (4x8, 8x4, 8x8, 16x8, etc). 
 
Data within a macroblock are transmitted in the order shown in Figure 1-1. If the macroblock is coded 
in 16x16 Intra mode, then the block labelled “-1” is transmitted first, containing the DC coefficient of 
each 4x4 luma block. Next, the luma residual blocks 0-15 are transmitted in the order shown (with the 
DC coefficient set to zero in a 16x16 Intra macroblock). Blocks  16 and 17 contain a 2x2 array of DC 
coefficients from the Cb and Cr chroma components respectively. Finally, chroma residual blocks 18-
25 (with zero DC coefficients) are sent. 
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16 17-1 (16x16 Intra
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Figure 1-1 Scanning order of residual blocks within a macroblock 

2. 4x4 residual transform and quantization (blocks 0-15, 18-25) 
This transform operates on 4x4 blocks of residual data (labelled 0-15 and 18-25 in Figure 1-1) after 
motion-compensated prediction or Intra prediction. The transform is based on the DCT but with some 
fundamental differences: 
1. It is an integer transform (all operations can be carried out with integer arithmetic, without loss of 

accuracy). 
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2. The inverse transform is fully specified in the H.264 standard and if this specification is followed 
correctly, mismatch between encoders and decoders should not occur. 

3. The core part of the transform is multiply-free, i.e. it only requires additions and shifts. 
4. A scaling multiplication (part of the complete transform) is integrated into the quantizer (reducing 

the total number of multiplications). 
 
The entire process of transform and quantization can be carried out using 16-bit integer arithmetic and 
only a single multiply per coefficient, without any loss of accuracy. 
 

2.1 Development from the 4x4 DCT 
 
The 4x4 DCT of an input array X is given by: 
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This matrix multiplication can be factorised [2] to the following equivalent form (Equation 2-2): 
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Equation 2-2 

CXCT is a “core” 2-D transform. E is a matrix of scaling factors and the symbol ⊗  indicates that each 
element of (CXCT) is multiplied by the scaling factor in the same position in matrix E (scalar 
multiplication rather than matrix multiplication). The constants a and b are as before; d is c/b 
(approximately 0.414).  
 
To simplify the implementation of the transform, d is approximated by 0.5. To ensure that the 
transform remains orthogonal, b also needs to be modified so that: 
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The 2nd and 4th rows of matrix C and the 2nd and 4th columns of matrix CT are scaled by a factor of 2 
and the post-scaling matrix E is scaled down to compensate. (This avoids multiplications by ½ in the 
“core” transform CXCT which would result in loss of accuracy using integer arithmetic). The final 
forward transform becomes: 
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Equation 2-3 
 
This transform is an approximation to the 4x4 DCT. Because of the change to factors d and b, the 
output of the new transform will not be identical to the 4x4 DCT.  
 
 
The inverse transform (defined in [1]) is given by: 
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Equation 2-4 

This time, Y is pre-scaled by multiplying each coefficient by the appropriate weighting factor from 
matrix Ei . Note the factors +/-½ in the matrices C and CT ; these can be implemented by a right-shift 
without a significant loss of accuracy because the coefficients Y are pre-scaled. 
 
The forward and inverse transforms are orthogonal, i.e. T-1(T(X)) = X.  
 

2.2 Quantization 
 
H.264 uses a scalar quantizer . The definition and implementation are complicated by the requirements 
to (a) avoid division and/or floating point arithmetic and (b) incorporate the post- and pre-scaling 
matrices Ef and Ei described above. 
 
The basic forward quantizer operation is as follows: 
 
Zij = round(Yij/Qstep) 
 



www.vcodex.com  H.264 / MPEG-4 Part 10 : Transform & Quantization 

© Iain E G Richardson 19/03/03 Page 4 of 9 

where Yij is a coefficient of the transform described above, Qstep is a quantizer step size and Zij is a 
quantized coefficient. 
 
A total of 52 values of Qstep are supported by the standard and these are indexed by a Quantization 
Parameter, QP. The values of Qstep corresponding to each QP are shown in Table 2-1. Note that Qstep 
doubles in size for every increment of 6 in QP; Qstep increases by 12.5% for each increment of 1 in 
QP. The wide range of quantizer step sizes makes it possible for an encoder to accurately and flexibly 
control the trade-off between bit rate and quality. The values of QP may be different for luma and 
chroma; both parameters are in the range 0-51 but QPChroma is derived from QPY  so that it QPC is less 
that QPY for values of QPY above 30. A user-defined offset between QPY and QPC may be signalled in 
a Picture Parameter Set. 
 
 

Table 2-1 Quantization step sizes in H.264 CODEC 

QP 0 1 2 3 4 5 6 7 8 9 10 11 12 …. 
QStep 0.625 0.6875 0.8125 0.875 1 1.125 1.25 1.375 1.625 1.75 2 2.25 2.5 …. 

QP … 18 … 24 … 30 … 36 … 42 … 48 … 51 
QStep  5  10  20  40  80  160  224 
 
The post-scaling factor a2, ab/2 or b2/4 (Equation 2-3) is incorporated into the forward quantizer. First, 
the input block X is transformed to give a block of unscaled coefficients W = CXCT. Then, each 
coefficient Wij is quantized and scaled in a single operation: 
 









=

Qstep
PF.WroundZ ijij  

Equation 2-5 
PF is a2, ab/2 or b2/4 depending on the position (i,j) (see Equation 2-3):  
 
Position PF 
(0,0), (2,0), (0,2) or (2,2) a2 
(1,1), (1,3), (3,1) or (3,3) b2/4 
Other ab/2 
 
The factor (PF/Qstep) is implemented in the H.264 reference model software [3] as a multiplication by 
MF (a multiplication factor) and a right-shift, thus avoiding any division operations: 
 








= qbitsijij 2
MF.WroundZ  

Equation 2-6 

where 
Qstep

PF
2
MF

qbits =  and qbits = 15+floor(QP/6) 

 
In integer arithmetic, Equation 2-6 can be implemented as follows: 
 
|Zij| = ( |Wij|.MF + f) >> qbits  
sign(Zij) = sign(Wij) 

Equation 2-7 
 

firstime
下划线
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where >> indicates a binary shift right. In the reference model software, f is 2qbits/3 for Intra blocks or 
2qbits/6 for Inter blocks.  
 
Example: 
 
QP = 4, hence Qstep = 1.0 
(i,j) = (0,0), hence PF = a2 = 0.25 
qbits = 15, hence 2qbits = 32768 
 

Qstep
PF

2
MF

qbits = , hence MF = (32768x0.25)/1 = 8192 

 
The first 6 values of MF can be calculated as follows, depending on QP and the coefficient position 
(i,j): 
 

Table 2-2 Multiplication factor MF 

 
QP 

Positions 
(0,0),(2,0),(2,2),(0,2) 

Positions 
(1,1),(1,3),(3,1),(3,3) 

 
Other positions 

0 13107 5243 8066 
1 11916 4660 7490 
2 10082 4194 6554 
3 9362 3647 5825 
4 8192 3355 5243 
5 7282 2893 4559 

 
The 2nd and 3rd columns of this table (positions with factors b2/4 and ab/2) have been modified 
slightly1 from the results of Equation 2-6. 
 
For QP>5, the factors MF remain unchanged but the divisor 2qbits increases by a factor of 2 for each 
increment of 6 in QP. For example, qbits=16 for 6≤QP≤11; qbits=17 for 12≤QP≤17; and so on. 
 

2.3 Rescaling 
 
The basic rescale (or “inverse quantizer”) operation is: 
 
Y’ij = Zij.Qstep 

Equation 2-8 
 
The pre-scaling factor for the inverse transform (matrix Ei , containing values a2, ab and b2 depending 
on the coefficient position) is incorporated in this operation, together with a further constant scaling 
factor of 64 to avoid rounding errors: 
 
W’ij = Zij.Qstep.PF.64 

Equation 2-9 

W’ij is a scaled coefficient which is then transformed by the “core” inverse transform (Ci
TWCi  : see 

Equation 2-4). The values at the output of the inverse transform are divided by 64 to remove the 
scaling factor (this can be implemented using only an addition and a right-shift). 
                                                      
1 It is acceptable to modify a forward quantizer in order to improve perceptual quality at the decoder, since only 
the rescaling (inverse quantizer) process is standardised. 
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The H.264 standard does not specify Qstep or PF directly. Instead, the parameter V=(Qstep.PF.64) are 
defined for 0≤QP≤5 and each coefficient position and the rescaling operation is: 
 
W’ij = Zij.Vij.2floor(QP/6) 

Equation 2-10 
 
Example: 
 
QP=3, hence Qstep = 0.875 and 2floor(QP/6) = 1 
(i,j)=(1,2), hence PF = ab = 0.3162 
V=(Qstep.PF.64)= 0.875x0.3162x65 ≅  18 
W’ij = Zijx18x1 

 
The values of V for 0≤QP≤5 are defined in the standard as follows: 

Table 2-3 Rescaling factor V 

 
QP 

Positions 
(0,0),(2,0),(2,2),(0,2) 

Positions 
(1,1),(1,3),(3,1),(3,3) 

 
Other positions 

0 10 16 13 
1 11 18 14 
2 13 20 16 
3 14 23 18 
4 16 25 20 
5 18 29 23 

 
The factor 2floor(QP/6) in Equation 2-10 makes the rescaled output increase by a factor of 2 for every 
increment of 6 in QP.  

3. 4x4 luma DC coefficient transform and quantization (16x16 Intra-mode only) 
 
If the macroblock is encoded in 16x16 Intra prediction mode (where the entire 16x16 luminance 
component is predicted from neighbouring pixels), each 4x4 residual block is first transformed using 
the “core” transform described above (CfXCf

T). The DC coefficient of each 4x4 block is then 
transformed again using a 4x4 Hadamard transform: 
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Equation 3-1 
 
WD is the block of 4x4 DC coefficients and YD is the block after transformation. The output 
coefficients YD(i,j) are divided by 2 (with rounding). 
 
The output coefficients YD(i,j) are then quantized to produce a block of quantized DC coefficients: 
 
|ZD(i,j)| = (|YD(i,j)|.MF(0,0) + 2f) >> (qbits+1) 
sign(ZD(i,j)) = sign(YD(i,j)) 

Equation 3-2 
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where MF, f and qbits are defined as before and MF depends on the position (i,j) within the 4x4 DC 
coefficient block as before. 
 
At the decoder, an inverse Hadamard transform is applied followed by rescaling (note that the order is 
not reversed as might be expected): 
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If QP is greater than or equal to 12, rescaling is performed by: 
 
W’D(i,j) = WQD(i,j).V(0,0).2floor(QP/6)-2 
 
If QP is less than 12, rescaling is performed by: 
 
W’D(i,j) = [WQD(i,j).V(0,0) + 21-floor(QP/6)]>>(2-floor(QP/6)  
 
V is defined as before. The rescaled DC coefficients W’D are then inserted into their respective 4x4 
blocks and each 4x4 block of coefficients is inverse transformed using the core DCT-based inverse 
transform (Ci

TW’Ci). 
 
In an intra-coded macroblock, much of the energy is concentrated in the DC coefficients and this extra 
transform helps to de-correlate the 4x4 luma DC coefficients (i.e. to take advantage of the correlation 
between the coefficients). 

4. 2x2 chroma DC coefficient transform and quantization 
Each chroma component in a macroblock is made up of four 4x4 blocks of samples. Each 4x4 block is 
transformed as described in section 2. The DC coefficients of each 4x4 block of coefficients are 
grouped in a 2x2 block (WD) and are further transformed prior to quantization: 
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Equation 4-1 

 
Quantization of the 2x2 output block YD is performed by: 
 
|ZD(i,j)| = (|YD(i,j)|.MF(0,0) + 2f) >> (qbits+1) 
sign(ZD(i,j)) = sign(YD(i,j)) 

Equation 4-2 
where MF, f and qbits are defined as before. 
 
During decoding, the inverse transform is applied before rescaling: 
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Equation 4-3 
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If QP is greater than or equal to 6, rescaling is performed by: 
 
W’D(i,j) = WQD(i,j).V(0.0).2floor(QP/6)-1 
 
If QP is less than 6, rescaling is performed by: 
 
W’D(i,j) = [WQD(i,j).V(0,0) ]>>1 
 
The rescaled coefficients are replaced in their respective 4x4 blocks of chroma coefficients which are 
then transformed as above (Ci

TW’Ci). As with the Intra luma DC coefficients, the extra transform 
helps to de-correlate the 2x2 chroma DC coefficients and hence improves compression performance. 

5. The complete transform, quantization, rescaling and inverse transform process 
 
The complete process from input residual block X to output residual block X’ is described below and 
illustrated in Figure 5-1. 
 
Encoding: 
 
1. Input: 4x4 residual samples:   X 
 
2. Forward “core” transform:   W = CfXCf

T 

(followed by forward transform for Chroma DC or Intra-16 Luma DC coefficients) 

3. Post-scaling and quantization:  Z = W. qbitsQstep.2
PF

  

(modified for Chroma DC or Intra-16 Luma DC) 
 
Decoding: 
 
(inverse transform for Chroma DC or Intra-16 Luma DC coefficients) 
4. Re-scaling (incorporating inverse transform pre-scaling): 
     W’ = Z.Qstep.PF.64 

(modified for Chroma DC or Intra-16 Luma DC) 
 
5. Inverse “core” transform:  X’ = Ci

TW’Ci 
 
6. Post-scaling:    X’’ = round(X’/64) 
 
7. Output: 4x4 residual samples:  X’’ 
 

Forward
transform Cf

Input
block X

Post-scaling
and

quantization

Rescale and
pre-scaling

Inverse
transform Ci

Output
block X''

2x2 or 4x4
DC

transform

2x2 or 4x4
DC inverse
transform

Chroma or Intra-
16 Luma only

Chroma or Intra-
16 Luma only  

Figure 5-1 Transform, quantization, rescale and inverse transform flow diagram 
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Example (luma 4x4 residual block, Inter mode):  
 
QP = 10 
 
Input block X: 

 j=0 1 2 3 
i=0 5 11 8 10 

1 9 8 4 12 
2 1 10 11 4 
3 19 6 15 7 

 
Output of “core” transform W: 

 j=0 1 2 3 
i=0 140 -1 -6 7 

1 -19 -39 7 -92 
2 22 17 8 31 
3 -27 -32 -59 -21 

 
MF = 8192, 3355 or 5243 (depending on the coefficient position) and qbits=16. Output of forward 
quantizer Z: 

 j=0 1 2 3 
i=0 17 0 -1 0 

1 -1 -2 0 -5 
2 3 1 1 2 
3 -2 -1 -5 -1 

 
V = 16, 25 or 20 (depending on position) and 2floor(QP/6) = 21 = 2. Output of rescale W’: 

 j=0 1 2 3 
i=0 544 0 -32 0 

1 -40 -100 0 -250 
2 96 40 32 80 
3 -80 -50 -200 -50 

 
Output of “core” inverse transform X’’ (after division by 64 and rounding): 

 j=0 1 2 3 
i=0 4 13 8 10 

1 8 8 4 12 
2 1 10 10 3 
3 18 5 14 7 

 

6. References 
                                                      
1 ITU-T Rec. H.264 / ISO/IEC 11496-10, “Advanced Video Coding”, Final Committee Draft, Document JVT- 
F100, December 2002 
2 A. Hallapuro and M. Karczewicz, “Low complexity transform and quantization – Part 1: Basic 
Implementation”, JVT document JVT-B038, February 2001 
3 JVT Reference Software version 4.0, ftp://ftp.imtc-files.org/jvt-experts/reference_software/ 
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H.264 / MPEG-4 Part 10 White Paper 
 
Reconstruction Filter 

1. Introduction  
The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for 
the coding (compression) of natural video images. The new standard [1] will be known as H.264 and 
also MPEG-4 Part 10, “Advanced Video Coding”. This document describes the methods of filtering 
reconstructed blocks in an H.264 CODEC. Note that the H.264 draft standard is not yet finalised and 
so readers are encouraged to refer to the latest version of the standard. 

2. Description of reconstruction filter 
A filter is applied to every decoded macroblock in order to reduce blocking distortion. The deblocking 
filter is applied after the inverse transform in the encoder (before reconstructing and storing the 
macroblock for future predictions) and in the decoder (before reconstructing and displaying the 
macroblock). The filter has two benefits: (1) block edges are smoothed, improving the appearance of 
decoded images (particularly at higher compression ratios) and (2) the filtered macroblock is used for 
motion-compensated prediction of further frames in the encoder, resulting in a smaller residual after 
prediction. (Note: intra-coded macroblocks are filtered, but intra prediction is carried out using 
unfiltered reconstructed macroblocks to form the prediction). Picture edges are not filtered. 
 
Filtering is applied to vertical or horizontal edges of 4x4 blocks in a macroblock, in the following 
order: 
1. Filter 4 vertical boundaries of the luma component (in order a,b,c,d in Figure 1) 
2. Filter 4 horizontal boundaries of the luma component (in order e,f,g,h, Figure 1) 
3. Filter 2 vertical boundaries of each chroma component (i,j) 
4. Filter 2 horizontal boundaries of each chroma component (k,l) 
 
Each filtering operation affects up to three pixels on either side of the boundary. Figure 2 shows 4 
pixels on either side of a vertical or horizontal boundary in adjacent blocks p and q (p0,p1,p2,p3 and 
q0,q1,q2,q3). Depending on the current quantizer, the coding modes of neighbouring blocks and the 
gradient of image samples across the boundary, several outcomes are possible, ranging from (a) no 
pixels are filtered to (b) p0, p1, p2, q0, q1, q2 are filtered to produce output pixels P0, P1, P2, Q0, Q1 
and Q2. 
 

a b c d

e

f

g

h
i j

k

l

Boundary filtering: 16x16
luma

8x8 chroma

 
Figure 1 Edge filtering order in a macroblock 
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Figure 2 Pixels adjacent to vertical and horizontal boundaries 

 

3. Boundary strength 
 
The choice of filtering outcome depends on the boundary strength and on the gradient of image 
samples across the boundary. The boundary strength parameter Bs is chosen according to the 
following rules: 
 
p or q is intra coded and boundary is a macroblock boundary Bs=4 (strongest filtering) 
p or q is intra coded and boundary is not a macroblock boundary Bs=3 
neither p or q is intra coded; p or q contain coded coefficients Bs=2 
neither p or q is intra coded; neither p or q contain coded coefficients; p 
and q have different reference frames or a different number of reference 
frames or different motion vector values 

Bs=1 

neither p or q is intra coded; neither p or q contain coded coefficients; p 
and q have same reference frame and identical motion vectors 

Bs=0 (no filtering) 

 
The filter is “stronger” at places where there is likely to be significant blocking distortion, such as the 
boundary of an intra coded macroblock or a boundary between blocks that contain coded coefficients. 

4. Filter decision 
 
A group of samples from the set (p2,p1,p0,q0,q1,q2) is filtered only if: 
(a) Bs > 0 and 
(b) |p0-q0|, |p1-p0| and |q1-q0| are each less than a threshold ?  or ?  (?  and ?  are defined in the 
standard [1]).  
 
The thresholds ?  and ?  increase with the average quantizer parameter QP of the two blocks p and q. 
The purpose of the filter decision is to “switch off” the filter when there is a significant change 
(gradient) across the block boundary in the original image. The definition of a significant change 
depends on QP. When QP is small, anything other than a very small gradient across the boundary is 
likely to be due to image features (rather than blocking effects) that should be preserved and so the 
thresholds ?  and ?  are low. When QP is larger, blocking distortion is likely to be more significant and 
? , ?  are higher so that more filtering takes place.  
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5. Filter implementation 
 
(a) Bs ?  {1,2,3}: 
A 4-tap linear filter is applied with inputs p1, p0, q0 and q1, producing filtered outputs P0 and Q0 
(0<Bs<4). 
 
In addition, if |p2-p0| is less than threshold ? , a 4-tap linear filter is applied with inputs p2, p1, p0 and 
q0, producing filtered output P1. If |q2-q0| is less than threshold ? , a 4-tap linear filter is applied with 
inputs q2, q1, q0 and p0, producing filtered output Q1. (p1 and q1 are never filtered for chroma, only 
for luma data). 
 
(b) Bs = 4: 
If |p2-p0|<?  and |p0-q0|<round(? /4): 
 P0 is produced by 5-tap filtering of p2, p1, p0, q0 and q1 
 P1 is produced by 4-tap filtering of p2, p1, p0 and q0 
 (Luma only) P2 is produced by 5-tap filtering of p3, p2, p1, p0 and q0. 
else: 
 P0 is produced by 3-tap filtering of p1, p0 and q1. 
 
If |q2-q0|<?  and |p0-q0|<round(? /4): 
 Q0 is produced by 5-tap filtering of q2, q1, q0, p0 and p1 
 Q1 is produced by 4-tap filtering of q2, q1, q0 and p0 
 (Luma only) Q2 is produced by 5-tap filtering of q3, q2, q1, q0 and p0. 
else: 
 Q0 is produced by 3-tap filtering of q1, q0 and p1. 

6. Filtering example  
 
A QCIF video clip is encoded using the AVC reference software with a fixed Quantization Parameter 
of 32. Figure 3 shows an original frame from the clip; Figure 4 shows the same frame after inter 
coding and reconstruction, with the loop filter disabled. With the loop filter enabled (Figure 5) the 
appearance is considerably better; there is still some distortion but most of the block edges have 
disappeared or faded. Note that sharp contrast boundaries tend to be preserved by the filter whilst 
block edges in smoother regions of the picture are smoothed. 
 
Figure 6 shows a decoded frame with a higher QP of 36 and with the loop filter disabled (note the 
increased blocking artefacts) and Figure 7 shows the same frame with the loop filter enabled. 
 

 
Figure 3 Original frame 
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Figure 4 Reconstructed, QP=32 (no filter) 

 

 
Figure 5 Reconstructed, QP=32 (with filter) 

 
Figure 6 Reconstructed, QP=36 (no filter) 

 
Figure 7 Reconstructed, QP=36 (with filter) 
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7. References 
 
                                                 
1 ITU-T Rec. H.264 / ISO/IEC 11496-10, “Advanced Video Coding”, Final Committee Draft, Document JVT - 
G050, March 2003 



www.vcodex.com H.264 / MPEG-4 Part 10 : Variable Length Coding 

© Iain E G Richardson 17/10/02 Page 1 of 7 

H.264 / MPEG-4 Part 10 White Paper 
 
Variable-Length Coding 

1. Introduction  
The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for 
the coding (compression) of natural video images. The new standard [1] will be known as H.264 and 
also MPEG-4 Part 10, “Advanced Video Coding”. The standard specifies two types of entropy coding: 
Context-based Adaptive Binary Arithmetic Coding (CABAC) and Variable-Length Coding (VLC). 
The Variable-Length Coding scheme, part of the Baseline Profile of H.264, is described in this 
document. 
 
Please note that the H.264 draft standard is not yet finalised and so readers are encouraged to refer to 
the latest version of the standard. 

2. Coded elements 
Parameters that require to be encoded and transmitted include the following (Table 2-1). 

Table 2-1 Parameters to be encoded 

Parameters Description 
Sequence-, picture- and 
slice-layer syntax elements 

 

Macroblock type mb_type Prediction method for each coded macroblock 
Coded block pattern Indicates which blocks within a macroblock contain coded coefficients 
Quantizer parameter Transmitted as a delta value from the previous value of QP 
Reference frame index Identify reference frame(s) for inter prediction 
Motion vector Transmitted as a difference (mvd) from predicted motion vector 
Residual data Coefficient data for each 4x4 or 2x2 block 
 
Above the slice layer, syntax elements are encoded as fixed- or variable-length binary codes. At the 
slice layer and below, elements are coded using either variable-length codes (VLCs) [2] or context-
adaptive arithmetic coding (CABAC) [3] depending on the entropy encoding mode. 

3. Variable length coding (VLC) 
When entropy_coding_mode is set to 0, residual block data is coded using a context-adaptive variable 
length coding (CAVLC) scheme and other variable-length coded units are coded using Exp-Golomb 
codes. 

3.1 Exp-Golomb entropy coding 
Exp-Golomb codes (Exponential Golomb codes) are variable length codes with a regular construction. 
Table 3-1 lists the first 9 codewords; it is clear from this table that the codewords progress in a logical 
order. Each codeword is constructed as follows: 
 
[M zeros][1][INFO] 
 
where INFO is an M-bit field carrying information. The first codeword has no leading zero or trailing 
INFO; codewords 1 and 2 have a single-bit INFO field; codewords 3-6 have a 2-bit INFO field; and so 
on. The length of each codeword is (2M+1) bits. 
 
Each Exp-Golomb codeword can be constructed by the encoder based on its index code_num: 
 
M = ?log2(code_num+1)?    
INFO = code_num + 1 – 2M 
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A codeword can be decoded as follows: 
1. Read in M leading zeros followed by 1. 
2. Read M-bit INFO field. 
3. code_num = 2M + INFO – 1 
 
(For codeword 0, INFO and M are zero). 
 

Table 3-1 Exp-Golomb codewords 

code_num Codeword 
0 1 
1 010 
2 011 
3 00100 
4 00101 
5 00110 
6 00111 
7 0001000 
8 0001001 

… … 
 
A parameter v to be encoded is mapped to code_num in one of 3 ways: 
 
ue(v) : Unsigned direct mapping, code_num = v. Used for macroblock type, reference frame index 
and others. 
 
se(v) : Signed mapping, used for motion vector difference, delta QP and others. v is mapped to 
code_num as follows (Table 3-2). 
code_num = 2|v| (v < 0) 
code_num = 2|v| - 1 (v ?  0) 
 

Table 3-2 Signed mapping se(v) 

v code_num 
0 0 
1 1 
-1 2 
2 3 
-2 4 
3 5 

… … 
 
me(v) : Mapped symbols; parameter v is mapped to code_num according to a table specified in the 
standard. This mapping is used for the coded_block_pattern parameter. Table 3-3 lists a small part of 
the table for Inter predicted macroblocks: coded_block_pattern indicates which 8x8 blocks in a 
macroblock contain non-zero coefficients. 
 

Table 3-3 Part of coded_block_pattern table 

coded_block_pattern (Inter prediction) code_num 
0 (no non-zero blocks) 0 
16 (chroma DC block non-zero) 1 
1  (top-left 8x8 luma block non-zero) 2 
2  (top-right 8x8 luma block non-zero) 3 
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4 (lower-left 8x8 luma block non-zero) 4 
8 (lower-right 8x8 luma block non-zero) 5 
32 (chroma DC and AC blocks non-zero) 6 
3 (top-left and top-right 8x8 luma blocks non-zero) 7 
… … 
 
Each of these mappings (ue, se and me) is designed to produce short codewords for frequently-
occurring values and longer codewords for less common parameter values. For example, macroblock 
type Pred_L0_16x16 (i.e. 16x16 prediction from a previous picture) is assigned code_num 0 because it 
occurs frequently whereas macroblock type Pred_8x8 (8x8 prediction from a previous picture) is 
assigned code_num 3 because it occurs less frequently. The commonly-occurring motion vector 
difference (MVD) value of 0 maps to code_num 0 whereas the less-common MVD = -3 maps to 
code_num 6. 

3.2 Context-based adaptive variable length coding (CAVLC) 
This is the method used to encode residual, zig-zag ordered 4x4 (and 2x2) blocks of transform 
coefficients. CAVLC is designed to take advantage of several characteristics of quantized 4x4 blocks: 
 
1. After prediction, transformation and quantization, blocks are typically sparse (containing mostly 
zeros). CAVLC uses run-level coding to compactly represent strings of zeros. 
2. The highest non-zero coefficients after the zig-zag scan are often sequences of +/-1. CAVLC signals 
the number of high-frequency +/-1 coefficients (“Trailing 1s” or “T1s”) in a compact way. 
3. The number of non-zero coefficients in neighbouring blocks is correlated. The number of 
coefficients is encoded using a look-up table; the choice of look-up table depends on the number of 
non-zero coefficients in neighbouring blocks.  
4. The level (magnitude) of non-zero coefficients tends to be higher at the start of the reordered array 
(near the DC coefficient) and lower towards the higher frequencies. CAVLC takes advantage of this 
by adapting the choice of VLC look-up table for the “level” parameter depending on recently-coded 
level magnitudes. 
 
CAVLC encoding of a block of transform coefficients proceeds as follows. 
 
1. Encode the number of coefficients and trailing ones (coeff_token). 
The first VLC, coeff_token, encodes both the total number of non-zero coefficients (TotalCoeffs) and 
the number of trailing +/-1 values (T1). TotalCoeffs can be anything from 0 (no coefficients in the 4x4 
block) 1 to 16 (16 non-zero coefficients). T1 can be anything from 0 to 3; if there are more than 3 
trailing +/-1s, only the last 3 are treated as “special cases” and any others are coded as normal 
coefficients. 
 
There are 4 choices of look-up table to use for encoding coeff_token, described as Num-VLC0, Num-
VLC1, Num-VLC2 and Num-FLC (3 variable-length code tables and a fixed-length code). The choice 
of table depends on the number of non-zero coefficients in upper and left-hand previously coded 
blocks Nu and NL. A parameter N is calculated as follows: 
 
If blocks U and L are available (i.e. in the same coded slice), N = (Nu + NL)/2 
If only block U is available, N=NU ; if only block L is available, N=NL ; if neither is available, N=0. 
 

Figure 3-1 Neighbouring blocks NU and NL 

 

                                                      
1 Note: coded_block_pattern (described earlier) indicates which 8x8 blocks in the macroblock contain non-zero 
coefficients; however, within a coded 8x8 block, there may be 4x4 sub-blocks that do not contain any 
coefficients, hence TotalCoeff may be 0 in any 4x4 sub-block. In fact, this value of TotalCoeff occurs most often 
and is assigned the shortest VLC. 
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N selects the look-up table (Table 3-4) and in this way the choice of VLC adapts depending on the 
number of coded coefficients in neighbouring blocks (context adaptive). Num-VLC0 is “biased” 
towards small numbers of coefficients; low values of TotalCoeffs (0 and 1) are assigned particularly 
short codes and high values of TotalCoeff particularly long codes. Num-VLC1 is biased towards 
medium numbers of coefficients (TotalCoeff values around 2-4 are assigned relatively short codes), 
Num-VLC2 is biased towards higher numbers of coefficients and FLC assigns a fixed 6-bit code to 
every value of TotalCoeff.  
 

Table 3-4 Choice of look-up table for coeff_token 

N Table for coeff_token 
0, 1 Num-VLC0 
2, 3 Num-VLC1 
4, 5, 6, 7 Num-VLC2 
8 or above FLC 
 
2. Encode the sign of each T1. 
For each T1 (trailing +/-1) signalled by coeff_token, a single bit encodes the sign (0=+, 1=-). These 
are encoded in reverse order, starting with the highest-frequency T1. 
 
3. Encode the levels of the remaining non-zero coefficients. 
The level (sign and magnitude) of each remaining non-zero coefficient in the block is encoded in 
reverse order, starting with the highest frequency and working back towards the DC coefficient. The 
choice of VLC table to encode each level adapts depending on the magnitude of each successive coded 
level (context adaptive). There are 7 VLC tables to choose from, Level_VLC0 to Level_VLC6. 
Level_VLC0 is biased towards lower magnitudes; Level_VLC1 is biased towards slightly higher 
magnitudes and so on. The choice of table is adapted in the following way: 
 
(a) Initialise the table to Level_VLC0 (unless there are more than 10 non-zero coefficients and less 
than 3 trailing ones, in which case start with Level_VLC1). 
(b) Encode the highest-frequency non zero coefficient. 
(c) If the magnitude of this coefficient is larger than a pre-defined threshold, move up to the next VLC 
table. 
 
In this way, the choice of level is matched to the magnitude of the recently-encoded coefficients. The 
thresholds are listed in Table 3-5; the first threshold is zero which means that the table is always 
incremented after the first coefficient level has been encoded. 
 

Table 3-5 Thresholds for determining whether to increment Level table number 

Current VLC table Threshold to increment table 
VLC0 0 
VLC1 3 
VLC2 6 
VLC3 12 
VLC4 24 
VLC5 48 
VLC6 N/A (highest table) 
 
4. Encode the total number of zeros before the last coefficient. 
TotalZeros is the sum of all zeros preceding the highest non-zero coefficient in the reordered array. 
This is coded with a VLC. The reason for sending a separate VLC to indicate TotalZeros is that many 
blocks contain a number of non-zero coefficients at the start of the array and (as will be seen later) this 
approach means that zero-runs at the start of the array need not be encoded. 
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5. Encode each run of zeros. 
The number of zeros preceding each non-zero coefficient (run_before) is encoded in reverse order. A 
run_before parameter is encoded for each non-zero coefficient, starting with the highest frequency, 
with two exceptions: 
(a) If there are no more zeros left to encode (i.e. ? [run_before] = TotalZeros), it is not necessary to 
encode any more run_before values. 
(b) It is not necessary to encode run_before for the final (lowest frequency) non-zero coefficient. 
 
The VLC for each run of zeros is chosen depending on (a) the number of zeros that have not yet been 
encoded (ZerosLeft) and (b) run_before. For example, if there are only 2 zeros left to encode, 
run_before can only take 3 values (0,1 or 2) and so the VLC need not be more than 2 bits long; if there 
are 6 zeros still to encode then run_before can take 7 values (0 to 6) and the VLC table needs to be 
correspondingly larger. 
 
 
CAVLC Examples 
 
In all the following examples, we assume that table Num-VLC0 is used to encode coeff_token. 
 
Example 1 
 
4x4 block: 
0 3 -1 0 
0 -1 1 0 
1 0 0 0 
0 0 0 0 

 
Reordered block: 
0,3,0,1,-1,-1,0,1,0… 
 
TotalCoeffs = 5 (indexed from highest frequency [4] to lowest frequency [0]) 
TotalZeros = 3 
T1s = 3 (in fact there are 4 trailing ones but only 3 can be encoded as a “special case”) 
 
Encoding: 
 
Element Value Code 
coeff_token TotalCoeffs=5, T1s=3 0000100 
T1 sign (4) + 0 
T1 sign (3) - 1 
T1 sign (2) - 1 
Level (1) +1 (use Level_VLC0) 1 
Level (0) +3 (use Level_VLC1) 0010 
TotalZeros 3 111 
run_before(4) ZerosLeft=3; run_before=1 10 
run_before(3) ZerosLeft=2; run_before=0 1 
run_before(2) ZerosLeft=2; run_before=0 1 
run_before(1) ZerosLeft=2; run_before=1 01 
run_before(0) ZerosLeft=1; run_before=1 No code required; last coefficient. 
 
The transmitted bitstream for this block is 000010001110010111101101 . 
 
Decoding: 
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The output array is “built up” from the decoded values as shown below. Values added to the output 
array at each stage are underlined. 
Code Element Value Output array 
0000100 coeff_token TotalCoeffs=5, T1s=3 Empty 
0 T1 sign + 1 
1 T1 sign - -1, 1 
1 T1 sign - -1, -1, 1 
1 Level +1 1, -1, -1, 1  
0010 Level +3 3, 1, -1, -1, 1 
111 TotalZeros 3 3, 1, -1, -1, 1 
10 run_before 1 3, 1, -1, -1, 0, 1 
1 run_before 0 3, 1, -1, -1, 0, 1 
1 run_before 0 3, 1, -1, -1, 0, 1 
01 run_before 1 3, 0, 1, -1, -1, 0, 1 
 
The decoder has inserted two zeros; however, TotalZeros is equal to 3 and so another 1 zero is inserted 
before the lowest coefficient, making the final output array: 
0, 3, 0, 1, -1, -1, 0, 1 
 
Example 2 
 
4x4 block: 
-2 4 0 -1 
3 0 0 0 
-3 0 0 0 
0 0 0 0 

 
Reordered block: 
-2, 4, 3, -3, 0, 0, -1, … 
 
TotalCoeffs = 5 (indexed from highest frequency [4] to lowest frequency [0]) 
TotalZeros = 2 
T1s = 1 
 
Encoding: 
 
Element Value Code 
coeff_token TotalCoeffs=5, T1s=1 0000000110 
T1 sign (4) - 1 
Level (3) Sent as –2 (see note 1)  

(use Level_VLC0) 
0001 

Level (2) 3 (use Level_VLC1) 0010 
Level (1) 4 (use Level_VLC1) 00010 
Level (0) -2 (use Level_VLC2) 111 
TotalZeros 2 0011 
run_before(4) ZerosLeft=2; run_before=2 00 
run_before(3..0) 0 No code required 
 
The transmitted bitstream for this block is 000000011010001001000010111001100. 
 
Note 1: Level (3), with a value of -3, is encoded as a special case. If there are less than 3 T1s, then the 
first non-T1 level will not have a value of +/-1 (otherwise it would have been encoded as a T1). To 
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save bits, this level is incremented if negative (decremented if positive) so that +/-2 maps to +/-1, +/-3 
maps to +/-2, and so on. In this way, shorter VLCs are used. 
 
Note 2: After encoding level (3), the level_VLC table is incremented because the magnitude of this 
level is greater than the first threshold (which is 0). After encoding level (1), with a magnitude of 4, 
the table number is incremented again because level (1) is greater than the second threshold (which is 
3). Note that the final level (-2) uses a different code from the first encoded level (also –2). 
 
Decoding: 
 
Code Element Value Output array 
0000000110 coeff_token TotalCoeffs=5, T1s=1 Empty 
1 T1 sign - -1 
0001 Level -2 decoded as -3 -3, -1  
0010 Level +3 +3, -3, -1 
00010 Level +4 +4, 3, -3, -1 
111 Level -2 -2, 4, 3, -3, -1 
0011 TotalZeros 2 -2, 4, 3, -3, -1 
00 run_before 2 -2, 4, 3, -3, 0, 0, -1 
 
All zeros have now been decoded and so the output array is: 
-2, 4, 3, -3, 0, 0, -1 
 
(This example illustrates how bits are saved by encoding TotalZeros: only a single run needs to be 
coded even though there are 5 non-zero coefficients). 
 

4. References 
 
                                                      
1 ITU-T Rec. H.264 / ISO/IEC 11496-10, “Advanced Video Coding”, Final Committee Draft, Document JVT- 
E022, September 2002 
2 JVT Document JVT-C028, G.Bjontegaard and K. Lillevold, “Context-Adaptive VLC Coding of Coefficients”, 
Fairfax, VA, May 2002 
3 JVT Document JVT-L13, D. Marpe, G. Blattermann and T. Wiegand, “Adaptive Codes for H.26L”, Eibsee, 
January 2001 
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H.264 / MPEG-4 Part 10 White Paper 
 
Context-Based Adaptive Arithmetic Coding (CABAC) 

1. Introduction  
The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for 
the coding (compression) of natural video images. The new standard [1] will be known as H.264 and 
also MPEG-4 Part 10, “Advanced Video Coding”. The standard specifies two types of entropy coding: 
Context-based Adaptive Binary Arithmetic Coding (CABAC) and Variable-Length Coding (VLC). 
This document provides a short introduction to CABAC. Familiarity with the concept of Arithmetic 
Coding is assumed (see chapter 8 of [2] for an introduction to Arithmetic Coding). 
 
Please note that the H.264 draft standard is not yet finalised and so readers are encouraged to refer to 
the latest version of the standard. 

2. Context-based adaptive binary arithmetic coding (CABAC)  
When entropy_coding_mode is set to 1, an arithmetic coding system is used to encode and decode 
H.264 syntax elements. The arithmetic coding scheme selected for H.264, Context-based Adaptive 
Binary Arithmetic Coding or CABAC [3], achieves good compression performance through (a) 
selecting probability models for each syntax element according to the element’s context, (b) adapting 
probability estimates based on local statistics and (c) using arithmetic coding.  
 
Coding a data symbol involves the following stages. 
 
1. Binarization: CABAC uses Binary Arithmetic Coding which means that only binary decisions (1 or 
0) are encoded. A non-binary-valued symbol (e.g. a transform coefficient or motion vector) is 
“binarized” or converted into a binary code prior to arithmetic coding. This process is similar to the 
process of converting a data symbol into a variable length code but the binary code is further encoded 
(by the arithmetic coder) prior to transmission. 
 
Stages 2, 3 and 4 are repeated for each bit (or “bin”) of the binarized symbol. 
 
2. Context model selection: A “context model” is a probability model for one or more bins of the 
binarized symbol. This model may be chosen from a selection of available models depending on the 
statistics of recently-coded data symbols. The context model stores the probability of each bin being 
“1” or “0”. 
 
3. Arithmetic encoding: An arithmetic coder encodes each bin according to the selected probability 
model. Note that there are just two sub-ranges for each bin (corresponding to “0” and “1”). 
 
4. Probability update: The selected context model is updated based on the actual coded value (e.g. if 
the bin value was “1”, the frequency count of “1”s is increased). 
 

3. The coding process 
 
We will illustrate the coding process for one example, MVDx (motion vector difference in the x-
direction). 
 
1. Binarize the value MVDx . Binarization is carried out according to the following table for |MVDx|<9 
(larger values of MVDx are binarized using an Exp-Golomb codeword). 
 
|MVDx| Binarization 
0 0 
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1 10 
2 110 
3 1110 
4 11110 
5 111110 
6 1111110 
7 11111110 
8 111111110 
 
(Note that each of these binarized codewords are uniquely decodeable). 
 
The first bit of the binarized codeword is bin 1; the second bit is bin 2; and so on. 
 
2. Choose a context model for each bin. One of 3 models is selected for bin 1, based on previous 
coded MVD values. The L1 norm of two previously-coded values, ek, is calculated: 
 
ek = |MVDA| + |MVDB|  where A and B are the blocks immediately to the left and above the 

current block (respectively). 
 
ek Context model for bin 1  
0 ?  ek < 3 Model 0 
3 ?  ek < 33 Model 1 
33 ?  ek Model 2 
 
If ek is small, then there is a high probability that the current MVD will have a small magnitude; 
conversely, if ek is large then it is more likely that the current MVD will have a large magnitude. We 
select a probability table (context model) accordingly. 
 
The remaining bins are coded using one of 4 further context models: 
 
Bin  Context model 
1 0, 1 or 2 depending on ek 
2 3 
3 4 
4 5 
5 6 
6 and higher 6 
 
3. Encode each bin. The selected context model supplies two probability estimates: the probability that 
the bin contains “1” and the probability that the bin contains “0”. These estimates determine the two 
sub-ranges that the arithmetic coder uses to encode the bin. 
 
4. Update the context models. For example, if context model 2 was selected for bin 1 and the value of 
bin 1 was “0”, the frequency count of “0”s is incremented. This means that the next time this model is 
selected, the probability of an “0” will be slightly higher. When the total number of occurrences of a 
model exceeds a threshold value, the frequency counts for “0” and “1” will be scaled down, which in 
effect gives higher priority to recent observations. 
 

4. The context models 
 
Context models and binarization schemes for each syntax element are defined in the standard. There 
are a total of 267 separate context models, 0 to 266 (as of September 2002) for the various syntax 
elements. Some models have different uses depending on the slice type: for example, skipped 



www.vcodex.com H.264 / MPEG-4 Part 10 : Introduction to CABAC 

© Iain E G Richardson 17/10/02 Page 3 of 3 

macroblocks are not permitted in an I-slice and so context models 0-2 are used to code bins of 
mb_skip or mb_type depending on whether the current slice is Intra coded. 
 
At the beginning of each coded slice, the context models are initialised depending on the initial value 
of the Quantization Parameter QP (since this has a significant effect on the probability of occurrence 
of the various data symbols). 
 

5. The arithmetic coding engine 
 
The arithmetic decoder is described in some detail in the Standard. It has three distinct properties: 
1. Probability estimation is performed by a transition process between 64 separate probability states 
for “Least Probable Symbol” (LPS, the least probable of the two binary decisions “0” or “1”). 
2. The range R representing the current state of the arithmetic coder is quantized to a small range of 
pre-set values before calculating the new range at each step, making it possible to calculate the new 
range using a look-up table (i.e. multiplication-free). 
3. A simplified encoding and decoding process is defined for data symbols with a near-uniform 
probability distribution. 
 
The definition of the decoding process is designed to facilitate low-complexity implementations of 
arithmetic encoding and decoding. Overall, CABAC provides improved coding efficiency compared 
with VLC at the expense of greater computational complexity. 
 

6. References 
 
                                                      
1 ITU-T Rec. H.264 / ISO/IEC 11496-10, “Advanced Video Coding”, Final Committee Draft, Document JVT- 
E022, September 2002 
2 I. Richardson, “Video CODEC Design”, John Wiley & Sons, 2002. 
3 D. Marpe, G Blättermann and T Wiegand, “Adaptive Codes for H.26L”, ITU-T SG16/6 document VCEG-L13, 
Eibsee, Germany, January 2001 
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H.264 / AVC  
 
Frame and picture management Draft 1.0 © Iain G Richardson Jan 04 
       iainrichardson@ieee.org 
 

1 Introduction 
This document introduces the parameters and processes involved in managing coded frames 
within the H.264/AVC standard. This document is informative only and readers should refer 
to the standard for accurate definitions of the parameters and processes described here. 

A frame or field of video is decoded from an access unit (a series of NAL units including one 
or more coded slices making up a coded picture). The decoding order of access units is 
indicated by the parameter frame_num (section 2) and the display order is indicated by the 
parameter Picture Order Count (section 3). Decoded pictures may be marked as “used for 
reference” (section 4.1) in which case they are available for inter prediction of further 
decoded pictures. Reference pictures are organised into one or two lists for inter prediction of 
P, B or SP slices. The default order of these lists (section 4.2) may be explicitly modified by a 
reference picture list reordering process (section 4.3). 

2 frame_num 
 
The parameter frame_num is decoded from each slice header. frame_num increases in 
decoding order of access units and does not necessarily indicate display order. 
 
IDR : frame_num set to zero.  
 
Otherwise: increments by 1 from previous reference frame (in decoding order)  
(unless gaps_in_frame_num_value_allowed, in which case decoder has to create “dummy” 
decoded frames to fill gap; or unless the current picture and the preceding reference picture 
are fields with opposite parity). 
 

3 Picture Order Count (POC) 

3.1 Overview 
 
POC determines the display (output) order of decoded frames, starting from first field of an 
IDR picture (POC=0). 
 
POC is derived from the slice header in one of 3 ways (see below). POC derived as 
TopFieldOrderCount and BottomFieldOrderCount, for the top and bottom fields of each 
coded frame.  
 
Note 1: an application may assign POC proportional to the sampling time of a picture relative 
to the last IDR. This could lead to variable gaps in POC. 
 
Note 2: the JM reference encoder increments POC by 2 for every complete frame. 
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3.2 POC Updating 
 
There are 3 supported methods of updating POC: 

3.2.1 Type 0: send POC explicitly in each slice header 
(Allows maximum flexibility) 
 
TopFieldOrderCount = POCMsb + POCLsb 
POCLsb is sent in each slice header 
POCMsb is incremented when POCLsb reaches its maximum value 
 
Picture_order_present: delta_POC_bottom is present in slice_header, can change the delta 
POC between top (first) and bottom (2nd) fields (default is zero delta) 
 
Example (generated from JM reference software) 
 
Frame pictures 
Display order: IBPBPBPB…  POC type 0 B not used for reference 
 
In order of access units: 
 
Access 
unit 

Type Used for 
reference 

frame_num POC_lsb TopFOC Display 
order 

1st I Yes 0 0 0 0 
2nd P Yes 1 4 4 2 
3rd B No 2 2 2 1 
4th P Yes 2 8 8 4 
5th B No 3 6 6 3 
6th P Yes 3 12 12 6 
7th B No 4 10 10 5 
8th P Yes 4 16 16 8 
… …      
 
(Frame number increments relative to previous reference picture) 
 

3.2.2 Type 1: set up expected increments in sequence parameter set; only send a delta 
if there is any change to expected order 

(Suitable for situation where there is a repeating “cycle” of pictures, c.f. MPEG-2 GOP) 
 
Sequence parameter set defines number of ref frames in POC “cycle” (repeating group of ref 
+ non-ref frames); offset to each ref frame in the “cycle”; offset to non-reference frame 
 
For each picture, calculate an expected POC as follows: 

? calculate number of POC cycles (since last IDR picture) 
? calculate position of current frame in POC cycle 
? calculate expected POC for current reference frame 
? add offset_for_non_ref_pic if this is not a reference frame  
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TopFieldOrderCount = expected POC + delta_pic_order_cnt[0] 
BottomFieldOrderCount  = expected POC + delta[1] (if field_pic) 
    = expected POC + offset to bottom field + delta[0] (otherwise) 
 
Example (a) 
 
Display order: IBPBPBPB…  POC type 1 B not used for reference 
1 ref frame in POC cycle; offset to next ref frame = 4; offset for non-ref pic = -2 
 
In order of access units: 
 
Access 
unit 

Type Used for 
reference 

frame_num delta_pic_order_cnt[0] TopFOC Display 
order 

1st I Yes 0 0 0 0 
2nd P Yes 1 0 4 2 
3rd B No 2 0 2 1 
4th P Yes 2 0 8 4 
5th B No 3 0 6 3 
6th P Yes 3 0 12 6 
7th B No 4 0 10 5 
8th P Yes 4 0 16 8 
… …      
 
Example (b) 
 
Display order: IBBPBBPBBPB…  POC type 1 B not used for reference 
1 ref frame in POC cycle; offset to next ref frame = 6; offset for non-ref pic = -4 
 
In order of access units: 
 
Access 
unit 

Type Used for 
reference 

frame_num delta_pic_order_cnt[0] TopFOC Display 
order 

1st I Yes 0 0 0 0 
2nd P Yes 1 0 6 3 
3rd B No 2 0 2 1 
4th B No 2 2 4 2 
5th P Yes 2 0 12 6 
6th B No 3 0 8 1 
7th B No 3 2 10 2 
8th P Yes 3 0 18 9 
… …      
[Note that 4th and 7th access units have a delta POC of +2; the POC (TopFOC) of each is 
(expected ref frame count)-4+2 ] 
 

3.2.3 Type 2: display order same as decoding order 
(POC is derived from frame_num; minimal overhead) 
 
For each picture: 
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if (used for reference) 
 set TopFOC and/or BottomFOC to (2*frame_num) 
else 
 set TopFOC and/or BottomFOC to (2*frame_num)-1 
 
This effectively means that (1) only one non-reference picture can occur between reference 
pictures, (2) the display order is the same as the access unit order (decoding order), (3) if all 
pictures are used for reference, POC increments by 2 each time. 
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4 Reference lists 

4.1 Reference picture marking 
Picture that is encoded or decoded and available for reference is stored in the Decoded Picture 
Buffer (DPB) and marked as (a) a short term reference picture, indexed according to 
frame_num or PicOrderCount or (b) a long term reference picture, indexed according to 
LongTermPicNum, a reference index assigned when a picture is marked as a long term 
reference picture. Short term reference pictures may be assigned a  LongTermPicNum 
(“changed” to a long term reference picture) at a later time. 
 
Short term reference pictures are removed from the DPB (a) by an explicit command in the 
bitstream or (b) when the DPB is “full” (oldest short term picture is removed). Long term 
pictures are removed by an explicit command in the bitstream. 
 

4.2 Reference picture ordering 
Reference pictures are ordered in one or two lists prior to encoding or decoding a slice. 
 
P slices use a single list of reference pictures, list0; B slices use 2 lists, list0 and list1. In each 
list, short term reference pictures are listed first by default (see below) followed by long term 
reference pictures (in increasing order of LongTermPicNum). The default short term 
reference picture order depends on decoding order when the current slice is a P slice and 
depends on display order when the current slice is a B slice. 
 
Default order of short term reference pictures in reference lists: 
 
List0 (P slice) : decreasing order of PicNum. (PicNum is a “wrapped around” (mod 
MaxFrameNum) version of frame_num). 
 
List0 (B slice) : (1) decreasing order of PicOrderCount (for pictures with POC earlier than 
current picture) then (2) increasing order of PicOrderCount (for pictures with POC later than 
current picture). 
 
List1 (B slice): (1) increasing order of PicOrderCount (later than current picture) then (2) 
decreasing order of PicOrderCount (earlier than current picture) 
 
Example: 
P slice, list0. Reference picture list is initially empty. Current frame_num is 150. Maximum 
size of the DPB is 5 frames. Italics indicate a LongTermPicNum. 
 
Operation list0(0) list0(1) list0(2) list0(3) list0(4) 
Initial state - - - - - 
Encode frame 150 150 - - - - 
Encode 151 151 150 - - - 
Encode 152 152 151 150 - - 
Encode 153 153 152 151 150 - 
Encode 154 154 153 152 151 150 
Encode 155 155 154    
Assign 154 to 155 153 152 151 3 
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LongTermPicNum 3 
Encode 156 and mark it as 
LongTermPicNum 1 

155 153 152 1 3 

Encode 157 157 155 153 1 3 
…..      
 
 

4.3 Reference picture list reordering 
 

4.3.1 Overview 
Purpose: enables encoder to change default order of reference pictures in list0 (and list1 for B-
slices) temporarily for the next decoded slice. 
 
Example application: The reference picture index ref_idx_l0 (or l1) occurs once in each MB 
or MB partition. This is signalled as a truncated Exp-Golomb code (te). Larger values of 
ref_idx cost more bits. There may be a reference picture (short term or long term) that is 
particularly useful for prediction of the current slice but is not in position 0 in the default list. 
This process enables the encoder to place this reference picture at a low index in the list so 
that it costs fewer bits to signal prediction from this picture. 
 

4.3.2 Process overview 
 
Syntax: 

ref_pic_list_reordering_flag
reordering_of_pic_nums_idc

abs_diff_pic_num_minus1

long_term_pic_num

0

1

3

0,1

2

 
If ref_pic_list_reordering_flag is 1, the reordering process is repeatedly carried out until 
reordering_of_pic_nums_idc is 3. 
 
Reordering process (list0; simplified) (similar for list1): 
 
Initialise a pointer (refIdxL0) to point to the first reference picture index (0) 
While reordering_of_pic_nums_idc ?  3 

Select a reference picture (short term, indicated by abs_diff_pic_num_minus1, or long 
term, indicated by long_term_pic_num) 

 Move this picture to the position in the list indicated by refIdxL0 
 Move all pictures from this position onwards one position later in list 
 Increment pointer refIdxL0 
 

4.3.3 Selecting a reference picture to move (remap) to current position 
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Short-term:  
abs_diff_pic_num_minus1 signals an offset (positive or negative) from a predicted reference 
picture. For the first reordering instruction (remapping), the predicted picture is the current 
picture number. For subsequent reordering instructions, the predicted picture is the picture 
number of the most recently remapped picture. 
 
If reordering_of_pic_nums_idc is 0, the picture to be remapped is calculated as follows: 
remapped_picture = predicted_picture – abs_diff_pic_num_minus_1 
 
If reordering_of_pic_nums_idc is 1, the remapped picture is calculated as follows: 
remapped_picture = predicted_picture + abs_diff_pic_num_minus_1 
 
(in each case, the calculation is modified to prevent errors due to the picture number wrapping 
round). 
 
Long-term: 
long_term_pic_num indicates a long term picture to be remapped to the current position in the 
list. 
 
Example: 
 
P slice, list0, DPB contains 5 reference pictures. Current frame_num is 158 [check: is this 
correct if latest frame in DPB is 157 ?].  
Default reference list is as follows: 
 
157, 155, 153, 1, 3 
 
The following series of reference picture reordering commands are received: 
 
Initial predicted_picture = 158; initial refIdxL0 = 0 
 
1. reordering_of_pic_nums_idc = 0, abs_diff_pic_num_minus_1 = 5 
remapped_picture = 158 – 5 = 153 
New list: 153, 157, 155, 1, 3 
New predicted picture = 153; new refIdxL0 = 1. 
 
2. reordering_of_pic_nums_idc = 1, abs_diff_pic_num_minus_1 = 2 
remapped_picture = 153 + 2 = 155 
New list: 153, 155, 157, 1, 3 
New predicted picture = 155; new refIdxL0 = 2. 
 
3. reordering_of_pic_nums_idc = 2, long_term_pic_num = 3 
remapped_picture = 3 
New list: 153, 155, 3, 157, 1 
 
4. reordering_of_pic_nums_idc = 3 
End of reordering process. 
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H.264 / MPEG-4 Part 10 White Paper 
 
Switching P and I slices 

1. Introduction  
The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for 
the coding (compression) of natural video images. The new standard [1] will be known as H.264 and 
also MPEG-4 Part 10, “Advanced Video Coding”. This document introduces the concepts of 
Switching P and I slices, part of the Extended Profile of H.264. 

2. SP and SI slices 
SP and SI slices are specially-coded slices that enable (among other things) efficient switching 
between video streams and efficient random access for video decoders. A common requirement is for 
a video decoder to switch between one of several encoded streams. For example, the same video 
material is coded at multiple bitrates for transmission across the Internet; a decoder attempts to decode 
the highest-bitrate stream it can receive but may require to switch automatically to a lower-bitrate 
stream if the data throughput drops. 
 
Example: A decoder is decoding Stream A and wants to switch to decoding Stream B (Figure 2-1). 
For simplicity, assume that each frame is encoded as a single slice and predicted from one reference 
(the previous decoded frame). After decoding P-slices A0 and A1, the decoder wants to switch to 
Stream B and decode B2, B3 and so on. If all the slices in Stream B are coded as P-slices, then the 
decoder will not have the correct decoded reference frame(s) required to reconstruct B2 (since B2 is 
predicted from the decoded frame B1 which does not exist in stream A). One solution is to code frame 
B2 as an I-slice. Because it is coded without prediction from any other frame, it can be decoded 
independently of preceding frames in stream B. The decoder can therefore switch between stream A 
and stream B as shown in Figure 2-1. Switching can be accomplished by inserting an I-slice at regular 
intervals in the coded sequence to create “switching points”. However, an I-slice is likely to contain 
much more coded data than a P-slice and the result is a peak in the coded bitrate at each switching 
point. 
 
SP-slices are designed to support switching without the increased bitrate penalty of I-slices. Figure 2-2 
shows how they may be used. At the switching point (frame 2 in each sequence), there are now 3 
coded SP-slices. These are coded using motion compensated prediction (making them more efficient 
than I-slices). SP-slice A2 can be decoded using reference frame A1; SP-slice B2 can be decoded using 
reference frame B2. The key to the switching process is SP-slice AB2 (known as a switching SP-slice): 
this is created in such a way that it can be decoded using motion-compensated reference frame A1, to 
produce decoded frame B2 (i.e. the decoder output frame B2 is identical whether decoding B1 followed 
by B2 or A1 followed by AB2). An extra SP-slice is required at each switching point (and in fact 
another SP-slice, BA2, would be required to switch in the other direction) but this is still more efficient 
than encoding frames A2 and B2 as I-slices. Table 2-1 lists the steps involved when a decoder switches 
from stream A to stream B.  
 

Table 2-1 Switching from stream A to stream B using SP-slices 

Input to decoder MC reference Output of decoder 
P-slice A0 [earlier frame] Decoded frame A0 

P-slice A1 Decoded frame A0 Decoded frame A1 

SP-slice AB2 Decoded frame A1 Decoded frame B2 
P-slice B3 Decoded frame B2 Decoded frame B3 

…. …. …. 
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A0 A1 A2 A3 A4
Stream A

B0 B1 B2 B3 B4
Stream B

P slices

P slices P slicesI slice

switch point

 
Figure 2-1 Switching streams using I-slices  

A0 A1 A2 A3 A4

AB2

B0 B1 B2 B3 B4

P slices P slicesSP slices

Stream A

Stream B

 
Figure 2-2 Switching streams using SP-slices  
 
A simplified diagram of the encoding process for SP-slice A2 is shown in Figure 2-3. A2 is produced 
by subtracting a motion-compensated version of A1’ (decoded frame A1) from frame A2 and then 
coding the residual. Unlike a “normal” P-slice, the subtraction occurs in the transform domain (i.e. 
after the block transform). SP-slice B2 is encoded in the same way (Figure 2-4). A decoder that has 
previously decoded frame A1 can decode SP-slice A2 as shown in Figure 2-5 (again, this is a 
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simplified diagram for clarity; in practice further quantization and rescaling steps are required to avoid 
mismatch). 
 

Frame A2

Frame A1' MC T

T Q VLE
+

-
SP A2

 
Figure 2-3 Encoding SP-slice A2 (simplified)  
 

Frame B2

Frame B1' MC T

T Q VLE
+

-
SP B2

 
Figure 2-4 Encoding SP-slice B2 (simplified)  
 

SP A2

Frame A1' MC T

Q-1VLD
+

Frame A2'T-1

+

 
Figure 2-5 Decoding SP-slice A2 (simplified)  
 
SP-slice AB2 is encoded as shown in Figure 2-6. Frame B2 (the frame we are switching to) is 
transformed and quantized. A motion-compensated prediction is formed from A1’ (the frame we are 
switching from). It should be noted that the “MC” block in this diagram attempts to find the best 
match for each MB of frame B2 using decoded frame A1 as a reference. The motion-compensated 
prediction is transformed, quantized and subtracted from the transformed and quantized B2 and the 
residual is encoded. A decoder that has previously decoded A1’ can decode SP-slice AB2 to produce 
frame B2’ (Figure 2-7). Frame A1’ is motion compensated (using the motion vector data encoded as 
part of AB2), transformed, quantized and added to the decoded residual, then the result is rescaled and 
inverse transformed to produce B2’. 
 

Frame B2

Frame A1' MC T

T Q VLE
+

-

Q

SP AB2

 
Figure 2-6 Encoding SP-slice AB2 (simplified)  
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Frame A1' MC T
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Q
 

Figure 2-7 Decoding SP-slice AB2   
 
If streams A and B are versions of the same original sequence coded at different bitrates, then the 
motion-compensated prediction of B2 from A1’ (SP-slice AB2) should be quite efficient. Results show 
that using SP-slices to switch between different versions of the same sequence is significantly more 
efficient than inserting I-slices at switching points [2]. Another application of SP-slices is to provide 
random access and “VCR-like” functionalities. For example, an SP-slice and a switching SP-slice are 
placed at the position of frame 10 (Figure 2-8). A decoder can fast-forward from frame A0 directly to 
frame A10 by first decoding A0, then decoding switching SP-slice A0-10 which can be decoded to 
produce frame A10 by prediction from A0. 
 
A second type of switching slice, the SI-slice, is also supported in the Extended Profile. This is used in 
a similar way to a switching SP-slice, except that the prediction is formed using 4x4 Intra Prediction 
from previously-decoded samples of the reconstructed frame.  This slice mode may be used (for 
example) to switch from one sequence to a completely different sequence (in which case it will not be 
efficient to use motion compensated prediction because there is no correlation between the two 
sequences). 
 

A8 A9 A10 A11

P slices SP slices

A0

A0-10

....

 
Figure 2-8 Fast-forward using SP-slices  
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